Consumer Reviews and Dynamic Price Signaling

Stepan Aleksenko

Jacob Kohlhepp

UCLA

UNC Chapel Hill

1/22/2024

Question

★★★★★ Great quality for the price!

Reviewed in the United States us on January 1, 2022

Question

★★★★★ Great quality for the price!

Reviewed in the United States us on January 1, 2022

Research Question: How do reputational incentives affect prices?

(1) Lower prices \longrightarrow better reviews

"...price increase of 1% leads to a decrease of 3%-5% in the average rating." Luca and Reshef (2021)

(1) Lower prices \longrightarrow better reviews

...price increase of 1% leads to a decrease of 3%–5% in the average rating." Luca and Reshef (2021)

(2) Better reviews \longrightarrow higher demand & revenue

"...a one-star increase in Yelp rating leads to a 5-9 % increase in revenue." Luca (2011)

(1) Lower prices \longrightarrow better reviews

...price increase of 1% leads to a decrease of 3%–5% in the average rating." Luca and Reshef (2021)

(2) Better reviews \longrightarrow higher demand & revenue "...a one-star increase in Yelp rating leads to a 5-9 % increase in revenue." Luca (2011)

Firm's tradeoff

- Lowering price improves reputation and increases future profits
- Lowering price decreases current profit

(1) Lower prices \longrightarrow better reviews

...price increase of 1% leads to a decrease of 3%–5% in the average rating." Luca and Reshef (2021)

(2) Better reviews → higher demand & revenue "...a one-star increase in Yelp rating leads to a 5-9 % increase in revenue." Luca (2011)

Firm's tradeoff

- Lowering price improves reputation and increases future profits
- Lowering price decreases current profit

When do firms underprice their product below the myopic optimum?

Model Overview

Single long-lived firm

- Firm strategically prices its product
- Exogenous product quality privately observed by the firm

Model Overview

Single long-lived firm

- Firm strategically prices its product
- Exogenous product quality privately observed by the firm

Multiple short-lived consumers

- Rational consumers observe past reviews and the current price
 Past prices are unobserved
- Reviews depend on the utility of consumption of experience good:
 - Price
 - Product quality (vertical differentiation)
 - IID taste shock (horizontal differentiation)

Results Preview

Main results

(1) Underpricing occurs iff ratio of *marginal* to *inframarginal* reviewers is high.

review if underpriced

review w/o underpricing

- Does not occur if consumer's tastes are too diverse (uniform case)
- Occurs if vertical quality differentiation > horizontal taste differentiation

Results Preview

Main results

(1) Underpricing occurs iff ratio of *marginal* to *inframarginal* reviewers is high.

review w/o underpricing

- Does not occur if consumer's tastes are too diverse (uniform case)
- Occurs if vertical quality differentiation > horizontal taste differentiation

(2) Underpricing can only happen at low current "reputation".

• The high-quality firm prices lower than the low-quality firm.

Results Preview

Main results

(1) Underpricing occurs iff ratio of *marginal* to *inframarginal* reviewers is high.

review w/o underpricing

- Does not occur if consumer's tastes are too diverse (uniform case)
- Occurs if vertical quality differentiation > horizontal taste differentiation

(2) Underpricing can only happen at low current "reputation".

• The high-quality firm prices lower than the low-quality firm.

(3) Underpricing increases consumer surplus and speeds up learning.

• Rational consumers are not mislead by UP & they pay less.

Literature

Consumer Reviews Depending on Prices

• Static models: Feng, Li, and Zhang (2019); Martin and Shelegia (2021); Huang, Li, and Zuo (2022);

• Boundedly-rational consumers: He and Chen (2018); Carnehl, Stenzel, and Schmidt (2021);

Reputation

• Reputation for quality: Holmström (1999); Mailath and Samuelson (2001); Board and Meyer-ter-Vehn (2013);

• Dynamic signaling: Fudenberg and Levine (1989); Pei (2020); Ekmekci et al. (2022);

Signaling by Choosing Info Structure

• Degan et al. (2021); Rodríguez Barraquer and Tan (2022);

Literature

Reputation model with strategic pricing:

- 1. Prices affect reviews (signal jamming)
- 2. Price signals quality today (repeated static signaling)

Table of Contents

Model

Equilibrium Concept: MPBE

Main Result

No-Underpricing Example

Proof of Main Result

Extensions

Conclusion

Firm

- Long-lived Firm sells a single product
 - Chooses $p_t \in [0,1]$ over $t \in \mathbb{R}_+$
- ▶ Product quality is exogenous: $\theta \in \{L, H\}, \ 0 < L < H = 1$
 - $\theta = H$, w/p q_0
 - In the paper, θ_t is redrawn at rate $\chi \geq \mathbf{0}$

Firm

- Long-lived Firm sells a single product
 - Chooses $p_t \in [0,1]$ over $t \in \mathbb{R}_+$
- ▶ Product quality is exogenous: $\theta \in \{L, H\}, \ 0 < L < H = 1$
 - $\theta = H$, w/p q_0
 - In the paper, θ_t is redrawn at rate $\chi \ge 0$

Consumers

- **Short-lived Consumers** arrive at rate λ
 - Unit demand
- Utility of consumption

$$u_t = \theta - p_t + \varepsilon_t$$

- ε_t is IID ex-post taste shock, w/ $f_{\varepsilon}(x) = f_{\varepsilon}(-x)$
- Outside option is 0

Reviews: Perfect Good News

• A consumer leaves a review iff $\theta = H \text{ AND } u_t > \overline{u} \quad (\overline{u} \ge 1)$

•
$$\lambda_g(p_t) := \lambda \cdot \Pr(H - p_t + \varepsilon_t > \overline{u})$$

Reviews: Perfect Good News

- A consumer leaves a review iff $\theta = H \text{ AND } u_t > \overline{u} \quad (\overline{u} \ge 1)$
 - $\lambda_g(p_t) := \lambda \cdot \Pr(H p_t + \varepsilon_t > \overline{u})$

Information

- $h^{t-} = \langle t, \{\tau_1, ..., \tau_n\} \rangle$ is a **public** history of past reviews
- Firm observes θ and h^{t-}
 - $p_t = p(\theta, h^{t-})$
- Consumer observes p_t and h^{t-}
 - Expectations about firm's quality $\tilde{\theta}(p_t, h^{t-}) \in [L, H]$ (buy iff $\tilde{\theta} p_t \ge 0$)

Reviews: Perfect Good News

- A consumer leaves a review iff $\theta = H \text{ AND } u_t > \overline{u} \quad (\overline{u} \ge 1)$
 - $\lambda_g(p_t) := \lambda \cdot \Pr(H p_t + \varepsilon_t > \overline{u})$

Information

- $h^{t-} = \langle t, \{\tau_1, ..., \tau_n\} \rangle$ is a **public** history of past reviews
- Firm observes θ and h^{t-}
 - $p_t = p(\theta, h^{t-})$
- Consumer observes p_t and h^{t-}
 - Expectations about firm's quality $\tilde{\theta}(p_t, h^{t-}) \in [L, H]$ (buy iff $\tilde{\theta} p_t \ge 0$)

Firm's Problem

Production is costless and payoffs are discounted at rate r

$$\max_{p_t} \mathbb{E} \left[\int_{0}^{+\infty} e^{-rt} \mathbf{1}_{\{\tilde{\theta}(p_t, h^{t-}) \ge p_t\}} p_t \; \lambda dt \right]$$

Table of Contents

Model

Equilibrium Concept: MPBE

Main Result

No-Underpricing Example

Proof of Main Result

Extensions

Conclusion

Markov State and Beliefs

Firm's Reputation is the public belief that the quality is high:

$$q(h^{t-}):=(\widetilde{ heta}(h^{t-})-L)/(H-L)\in [0,1]$$

Markov State and Beliefs

Firm's Reputation is the public belief that the quality is high:

$$q(h^{t-}):=(\widetilde{ heta}(h^{t-})-L)/(H-L)\in[0,1]$$

Strategies, beliefs, and values depend on history only via $q(h^{t-})$

- Firm's prices $p(\theta, q)$
- Consumers' beliefs about prices $\tilde{p}(\theta, q)$
- Consumers' expectations about firm's quality $\tilde{\theta}(p,q) \in [L,H]$
- Firm's value function $V(\theta, q) \in \mathbb{R}_+$

Equilibrium

MPBE is {
$$p(\theta, q), V(\theta, q), \tilde{p}(\theta, q), \tilde{\theta}(p, q)$$
}, s.t.

(1) $V(\theta, q)$ and $p_{\theta}(q)$ solve HJB (Static, Reputation)

$$rV(H,q) = \max_{p \in \mathcal{P}_q} \left\{ \lambda p + \lambda_g(p) \cdot \left[V(H,1) - V(H,q) \right] + V_q(H,q) \cdot \frac{dq}{dt} \right\}$$
$$rV(L,q) = \max_{p \in \mathcal{P}_q} \left\{ \lambda p + V_q(L,q) \cdot \frac{dq}{dt} \right\}$$

•
$$\frac{dq}{dt} = -\lambda_g(\tilde{p}(H,q)) \cdot q(1-q)$$
 (w/o good news)

• $\mathcal{P}_q := \{p \in [0,1] | \widetilde{ heta}(p,q) \geq p\}$ (Acceptable Prices)

Equilibrium

MPBE is {
$$p(\theta, q), V(\theta, q), \tilde{p}(\theta, q), \tilde{\theta}(p, q)$$
}, s.t.

(1) $V(\theta, q)$ and $p_{\theta}(q)$ solve HJB (Static, Reputation)

$$rV(H,q) = \max_{p \in \mathcal{P}_q} \left\{ \lambda p + \lambda_g(p) \cdot \left[V(H,1) - V(H,q) \right] + V_q(H,q) \cdot \frac{dq}{dt} \right\}$$
$$rV(L,q) = \max_{p \in \mathcal{P}_q} \left\{ \lambda p + V_q(L,q) \cdot \frac{dq}{dt} \right\}$$

•
$$rac{dq}{dt} = -\lambda_g(ilde{p}(H,q)) \cdot q(1-q)$$
 (w/o good news)

- $\mathcal{P}_q := \{p \in [0,1] | \widetilde{ heta}(p,q) \geq p\}$ (Acceptable Prices)
- (2) Beliefs about prices are correct

•
$$\tilde{p}(\theta,q) = p(\theta,q)$$

Equilibrium

MPBE is {
$$p(\theta, q), V(\theta, q), \tilde{p}(\theta, q), \tilde{\theta}(p, q)$$
}, s.t.

(1) $V(\theta, q)$ and $p_{\theta}(q)$ solve HJB (Static, Reputation)

$$rV(H,q) = \max_{p \in \mathcal{P}_q} \left\{ \lambda p + \lambda_g(p) \cdot \left[V(H,1) - V(H,q) \right] + V_q(H,q) \cdot \frac{dq}{dt} \right\}$$
$$rV(L,q) = \max_{p \in \mathcal{P}_q} \left\{ \lambda p + V_q(L,q) \cdot \frac{dq}{dt} \right\}$$

•
$$rac{dq}{dt} = -\lambda_g(ilde{p}(H,q)) \cdot q(1-q)$$
 (w/o good news)

- $\mathcal{P}_q := \{p \in [0,1] | \widetilde{ heta}(p,q) \geq p\}$ (Acceptable Prices)
- (2) Beliefs about prices are correct
 - $\tilde{p}(\theta,q) = p(\theta,q)$
- (3) Consumer expectations are **Bayesian** on path
 - $ilde{ heta}(p_{ heta}(q),q) = \mathbb{E}[heta|p_{ heta}(q),q]$

Continuity Refinement

Continuity Refinement

Belief function $\tilde{\theta}(p, q)$ is continuous in *p*.

Equilibrium is an MPBE that satisfies continuity refinement.

Table of Contents

Model

Equilibrium Concept: MPBE

Main Result

No-Underpricing Example

Proof of Main Result

Extensions

Conclusion

No Underpricing & Underpricing

Equilibrium dichotomy:

(1) No UnderPricing (NUP) is pricing at the consumers' willingness to pay:

 $ilde{ heta}(q):=qH+(1-q)L$

(2) UnderPricing (**UP**) is pricing below the consumers' willingness to pay.

Remark: there is **NUP** in the myopic benchmark; $\tilde{\theta}(q)$ is the standard price in reputation models.

Main Result

Theorem 1

An equilibrium exists.

- 1. If $h_{\varepsilon} < \frac{1}{1-L}$, then **no underpricing** is the unique equilibrium ($\forall q \ p(\theta, q) = \tilde{\theta}(q)$).
- 2. If $h_{\varepsilon} > \frac{1}{1-L}$, then $\exists 0 < q^* < q^{**} \le 1$, s.t. in every equilibrium
 - (a) there is underpricing $\forall q \leq q^*$: p(H, q) = 0, p(L, q) = L(b) there is no underpricing $\forall q \geq q^{**}$.

Adjusted hazard rate (of taste shock distribution) is

$$h_arepsilon := rac{(F_arepsilon(ar u-1+L)-F_arepsilon(ar u-1))/L}{1-F_arepsilon(ar u-1+L)+r/\lambda}$$

Adjusted Hazard Rate

Inframarginal reviewers (NUP: p = L) v.s. Marginal reviewers (from UP $\rightarrow p = 0$) at q = 0

Table of Contents

Model

Equilibrium Concept: MPBE

Main Result

No-Underpricing Example

Proof of Main Result

Extensions

Conclusion

No-Underpricing Example: Uniform Case

Assumption

 $\varepsilon \sim U[-a, a]$, for $a \geq \max\{\bar{u}, 1 - \bar{u}\}$

$$\lambda_g(p) = \lambda \Pr(1 - p + \varepsilon \ge \overline{u}) = -\frac{\lambda}{2a} \cdot p + \frac{\lambda(1 + a - \overline{u})}{2a}$$

No-Underpricing Example: Uniform Case

Assumption

 $\varepsilon \sim U[-a, a]$, for $a \geq \max\{\bar{u}, 1 - \bar{u}\}$

$$\lambda_g(p) = \lambda \operatorname{Pr}(1 - p + \varepsilon \ge \overline{u}) = -\frac{\lambda}{2a} \cdot p + \frac{\lambda(1 + a - \overline{u})}{2a}$$

Pricing incentives for H

$$\frac{\partial}{\partial p} \left\{ \lambda p + \lambda_g(p) [V(H,1) - V(H,q)] \right\} = \underbrace{\lambda}_{\text{static incentives}} - \underbrace{\frac{\lambda}{2a} [V(H,1) - V(H,q)]}_{\text{reputational incentives}}$$

No-Underpricing Example: Uniform Case

Assumption

 $\varepsilon \sim U[-a, a]$, for $a \geq \max\{\bar{u}, 1 - \bar{u}\}$

$$\lambda_g(p) = \lambda \Pr(1 - p + \varepsilon \ge \overline{u}) = -\frac{\lambda}{2a} \cdot p + \frac{\lambda(1 + a - \overline{u})}{2a}$$

Pricing incentives for H

$$\frac{\partial}{\partial p} \left\{ \lambda p + \lambda_g(p) [V(H,1) - V(H,q)] \right\} = \underbrace{\lambda}_{\text{static incentives}} - \underbrace{\frac{\lambda}{2a} [V(H,1) - V(H,q)]}_{\text{reputational incentives}}$$

Optimal pricing

$$p_{H}^{*}(q) = \mathbf{1}_{\{\lambda - \frac{\lambda}{2a}[V(H,1) - V(H,q)] > 0\}} \cdot \max \mathcal{P}_{q}$$
$$p_{L}^{*}(q) = \max \mathcal{P}_{q}$$

Uniform Case: Optimal Pricing

Lemma

The high-quality firm always prefers choosing the highest acceptable price, $\max P_q$.

Corollary: every equilibrium is pooling, $\forall q \ p(L,q) = p(H,q) = \max \mathcal{P}_q$.
Lemma

The high-quality firm always prefers choosing the highest acceptable price, $\max P_q$.

Corollary: every equilibrium is pooling, $\forall q \ p(L,q) = p(H,q) = \max \mathcal{P}_q$.

Proof intuition (by contradiction)

$$\frac{\partial}{\partial p} = \lambda - \frac{\lambda}{2a} [V(H, 1) - V(H, q)]$$

▶ Want to show: static incentives > reputation incentives (∀q)

Lemma

The high-quality firm always prefers choosing the highest acceptable price, $\max P_q$.

Corollary: every equilibrium is pooling, $\forall q \ p(L,q) = p(H,q) = \max \mathcal{P}_q$.

Proof intuition (by contradiction)

$$\frac{\partial}{\partial p} = \lambda - \frac{\lambda}{2a} [V(H, 1) - V(H, q)]$$

▶ Want to show: static incentives > reputation incentives (∀q)

▶ Try to break this result by increasing λ and [V(H, 1) - V(H, q)]

Lemma

The high-quality firm always prefers choosing the highest acceptable price, $\max P_q$.

Corollary: every equilibrium is pooling, $\forall q \ p(L,q) = p(H,q) = \max \mathcal{P}_q$.

Proof intuition (by contradiction)

$$\frac{\partial}{\partial p} = \lambda - \frac{\lambda}{2a} [V(H, 1) - V(H, q)]$$

- ▶ Want to show: static incentives > reputation incentives (∀q)
- ▶ Try to break this result by increasing λ and [V(H, 1) V(H, q)]
- [V(H,1) V(H,q)] is largest when q = 0
- V/o underpricing: $V(H, 0) = \frac{\lambda_g(L) \cdot V(H, 1) + \lambda L}{\lambda_g(L) + r}$

$$\Rightarrow V(H,1) - V(H,0) \leq \frac{rV(H,1) - \lambda L}{\lambda_g(L) + r} = \frac{1 - L}{1 - F_{\varepsilon}(\bar{u} - 1 + L) + r/\lambda}$$

Lemma

The high-quality firm always prefers choosing the highest acceptable price, $\max P_q$.

Corollary: every equilibrium is pooling, $\forall q \ p(L,q) = p(H,q) = \max \mathcal{P}_q$.

Proof intuition (by contradiction)

$$\frac{\partial}{\partial p} = \lambda - \frac{\lambda}{2a} [V(H, 1) - V(H, q)]$$

- ▶ Want to show: static incentives > reputation incentives (∀q)
- Try to break this result by increasing λ and [V(H, 1) V(H, q)]
- [V(H,1) V(H,q)] is largest when q = 0
- V/o underpricing: $V(H, 0) = \frac{\lambda_g(L) \cdot V(H, 1) + \lambda L}{\lambda_g(L) + r}$

$$\Rightarrow V(H,1) - V(H,0) \leq \frac{rV(H,1) - \lambda L}{\lambda_g(L) + r} = \frac{1 - L}{1 - F_{\varepsilon}(\bar{u} - 1 + L) + r/\lambda}$$

Good news arrives very soon with or without underpricing at q=0.

Unreasonable Underpricing

Both types underprice: $p(H, q) = p(L, q) < \tilde{\theta}(q)$

Unreasonable Underpricing

Both types underprice: $p(H,q) = p(L,q) < \tilde{\theta}(q)$

Continuity Refinement

Belief function $\tilde{\theta}(p, q)$ is continuous in *p*.

No-Underpricing Equilibrium

Proposition

If ε is distributed uniformly, NUP is the unique equilibrium.

$$orall \, q: \ p(heta,q) = ilde{ heta}(q) = q H + (1-q) L$$

No-Underpricing Equilibrium

Proposition

If ε is distributed uniformly, **NUP** is the unique equilibrium.

$$orall \, q: \; p(heta,q) = ilde{ heta}(q) = q H + (1-q) L$$

Proof by contradiction:

Both types can increase their prices.

Table of Contents

Model

Equilibrium Concept: MPBE

Main Result

No-Underpricing Example

Proof of Main Result

Extensions

Conclusion

Proof: Part 1

UP Condition

Theorem 1 (restated)

1. $h_{\varepsilon} < \frac{1}{1-l} \Rightarrow$ **NUP** is the unique equilibrium ($\forall q$).

2. $h_{\varepsilon} > \frac{1}{1-L} \Rightarrow$ there is **UP** in every equilibrium:

$$\exists 0 < q^* < q^{**} \le 1$$
, s.t.
(a) UP $\forall q \le q^*$: $p(H, q) = 0$, $p(L, q) = L$
(b) NUP $\forall q \ge q^{**}$.

Adjusted hazard rate (of taste shock distribution) is

$$h_arepsilon = rac{(F_arepsilon(ar u-1+L)-F_arepsilon(ar u-1))/L}{1-F_arepsilon(ar u-1+L)+r/\lambda}$$

Pricing Incentives

Lemma

 $\lambda_g(p)$ and H's objective function $(\lambda p + \lambda_g(p)(V(H, 1) - V(H, q)))$ are **convex** and $p(H, q) \in \{0, \max \mathcal{P}(q)\}$

Pricing Incentives

Lemma

 $\lambda_g(p)$ and H's objective function $(\lambda p + \lambda_g(p)(V(H, 1) - V(H, q)))$ are **convex** and $p(H, q) \in \{0, \max \mathcal{P}(q)\}$

Recall: Reviews are sufficiently selective: $\bar{u} \ge 1$

Motivation: Only 1 out of 1000 consumers leaves a review (Hu, Pavlou, and Zhang 2017).

If h_ε > 1/(1-L), then there is some UP in every equilibrium.
If h_ε < 1/(1-L), then NUP is the unique equilibrium.

If h_ε > 1/(1-L), then there is some UP in every equilibrium.
If h_ε < 1/(1-L), then NUP is the unique equilibrium.

Sketch of the proof:

• Assume that **NUP** $(\forall q)$ is an equilibrium

If h_ε > 1/(1-L), then there is some UP in every equilibrium.
If h_ε < 1/(1-L), then NUP is the unique equilibrium.

Sketch of the proof:

- Assume that **NUP** $(\forall q)$ is an equilibrium
- We need to check underpricing incentives only at q = 0

If h_ε > 1/(1-L), then there is some UP in every equilibrium.
If h_ε < 1/(1-L), then NUP is the unique equilibrium.

Sketch of the proof:

- Assume that **NUP** $(\forall q)$ is an equilibrium
- We need to check underpricing incentives only at q = 0
- ▶ $h_{\varepsilon} < \frac{1}{1-L} \Rightarrow$ there are no underpricing incentives \Rightarrow **NUP** ($\forall q$) is an equilibrium and it is unique (because it yields the largest underpricing incentives).

If h_ε > 1/(1-L), then there is some UP in every equilibrium.
If h_ε < 1/(1-L), then NUP is the unique equilibrium.

Sketch of the proof:

- Assume that **NUP** $(\forall q)$ is an equilibrium
- We need to check underpricing incentives only at q = 0
- ▶ $h_{\varepsilon} < \frac{1}{1-L} \Rightarrow$ there are no underpricing incentives \Rightarrow **NUP** ($\forall q$) is an equilibrium and it is unique (because it yields the largest underpricing incentives).
- ▶ If $h_{\varepsilon} > \frac{1}{1-L} \Rightarrow$ there are underpricing incentives \Rightarrow **NUP** ($\forall q$) is NOT an equilibrium \Rightarrow there must be **UP** in every equilibrium.

Adjusted Hazard Rate

Comparative Statics

Corollary Take a set of primitives L, q_0 , λ , r, F_{ε} . Then (1) $\exists \alpha^* < +\infty$, s.t. $\forall \alpha > \alpha^*$ and $\varepsilon' = \alpha \varepsilon$ NUP is the unique equilibrium. (2) $\exists L^* < 1$, s.t. $\forall L > L^*$ NUP is the unique equilibrium. (3) $\exists (\lambda/r)^* > 0$, s.t. $\forall (\lambda/r) < (\lambda/r)^*$ NUP is the unique equilibrium.

Adjusted hazard rate (of taste shock distribution) is

$$h_{\varepsilon} = \frac{(F_{\varepsilon}(\bar{u} - 1 + L) - F_{\varepsilon}(\bar{u} - 1))/L}{1 - F_{\varepsilon}(\bar{u} - 1 + L) + r/\lambda}$$

Proof: Part 2

Theorem 1 (restated)

1.
$$h_{\varepsilon} < \frac{1}{1-L} \Rightarrow$$
 NUP is the unique equilibrium ($\forall q$).

2. $h_{\varepsilon} > \frac{1}{1-L} \Rightarrow$ there is **UP** in every equilibrium:

$$\exists 0 < q^* < q^{**} \le 1$$
, s.t.
(a) UP $\forall q \le q^*$: $p(H, q) = 0$, $p(L, q) = L$
(b) NUP $\forall q \ge q^{**}$.

Adjusted hazard rate (of taste shock distribution) is

$$h_{\varepsilon} = \frac{(F_{\varepsilon}(\bar{u}-1+L) - F_{\varepsilon}(\bar{u}-1))/L}{1 - F_{\varepsilon}(\bar{u}-1+L) + r/\lambda}$$

Underpricing Equilibrium Structure

Unique signaling equilibrium is **UP** $(\forall q < q^*)$

Underpricing Equilibrium Structure

Unique signaling equilibrium is **UP** $(\forall q \leq q^*)$ Multiple signaling equilibria $(\forall q^* < q < q^{**})$

Underpricing Equilibrium Structure

Table of Contents

Model

Equilibrium Concept: MPBE

Main Result

No-Underpricing Example

Proof of Main Result

Extensions

Conclusion

Bad News

Consumers leave BAD reviews iff $\theta = L$ and $u_t < \underline{u}$.

Bad News

Consumers leave BAD reviews iff $\theta = L$ and $u_t < \underline{u}$.

Proposition

If ε is distributed uniformly, NUP is the unique equilibrium.

Popularity-based Demand

Consumer arrival rate $\lambda(q)$ is increasing in the firm's reputation q.

Popularity-based Demand

Consumer arrival rate $\lambda(q)$ is increasing in the firm's reputation q.

Proposition

An equilibrium exists.

1. If $h_{\varepsilon} < \frac{1}{\frac{\lambda(1)}{\lambda(0)} - L}$, then **NUP** is the unique equilibrium ($\forall q$).

2. If
$$h_{\varepsilon} > \frac{1}{\frac{\lambda(1)}{\lambda(0)} - L}$$
, then $\exists \ 0 < q^* < q^{**} \le 1$, s.t. in every equilibrium there is UP $\forall q \le q^*$ and NUP $\forall q \ge q^{**}$.

Adjusted hazard rate (of taste shock distribution) is

$$h_{\varepsilon} = \frac{\lambda(0) \cdot (F_{\varepsilon}(\bar{u} - 1 + L) - F_{\varepsilon}(\bar{u} - 1))/L}{\lambda(0) \cdot (1 - F_{\varepsilon}(\bar{u} - 1 + L)) + r}$$

Table of Contents

Model

Equilibrium Concept: MPBE

Main Result

No-Underpricing Example

Proof of Main Result

Extensions

Conclusion

• If the firm is myopic, *L* and *H* prefer the highest price \Rightarrow **NUP** \Rightarrow *CS* = 0

• If the firm is myopic, *L* and *H* prefer the highest price \Rightarrow **NUP** \Rightarrow *CS* = 0

- If the firm is myopic, *L* and *H* prefer the highest price \Rightarrow **NUP** \Rightarrow *CS* = 0
- $\blacktriangleright \mathbf{UP} \Rightarrow CS > 0.$
- ▶ High-quality firm underprices more, but the low-quality firm loses the surplus.

- If the firm is myopic, *L* and *H* prefer the highest price \Rightarrow **NUP** \Rightarrow *CS* = 0
- $\blacktriangleright \mathbf{UP} \Rightarrow CS > 0.$
- ▶ High-quality firm underprices more, but the low-quality firm loses the surplus.
- Underpricing speeds up learning and makes both ratings and prices more informative.

- If the firm is myopic, *L* and *H* prefer the highest price \Rightarrow **NUP** \Rightarrow *CS* = 0
- ▶ **UP** \Rightarrow *CS* > 0.
- ▶ High-quality firm underprices more, but the low-quality firm loses the surplus.
- Underpricing speeds up learning and makes both ratings and prices more informative.
- Platform transparency and observable past prices may harm consumers.

Summary

Price-dependent reviews can but need not induce underpricing.

• Underpricing depends on the ratio of the density of marginal reviewers to the mass of the inframarginal ones, who leave reviews without underpricing.

If underpricing happens, it must occur at low-reputation levels in every equilibrium.

• High-quality firm underprices more than low-quality firm.

Underpricing hurts low-quality firm, increases CS, and speeds up social learning.

Thank you!
Empirical Motivation

Firms' ratings affect their revenue

Luca (2011); Chevalier and Mayzlin (2006)

Higher prices negatively affect product reviews/ratings Luca and Reshef (2021); Cabral and Li (2015)

> Firms take these reputational incentives into account when setting prices

"...firms close to upgrading their tier are 4-9% more likely to discount." Sorokin (2021)

Back

Extreme Reviews Empirical Evidence

- Across 25 platforms and 280 million reviews, there are extreme or polarized reviews (Schoenmüller, Netzer, and Stahl 2019)
- But experimental reviews are uni-modal (Hu, Zhang, and Pavlou 2009, Schoenmüller, Netzer, and Stahl 2019)
- Medium quality products are not rated possibly due to a cost of leaving a rating (Lafky 2014)
- Compensated reviews on Glassdoor are less extreme (Marinescu et al. 2021)

Extreme Reviews

Figure 2. Distribution of Experimental versus Amazon's Ratings for a Music CD

Source: Hu, Zhang, and Pavlou (2009)